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A free-streamline theory is presented for the separated flow past two-dimensional 
bluff bodies attached to a long plane wall on which a turbulent boundary layer 
has developed. The non-uniform velocity profile in the turbulent boundary layer 
which would be measured if the bluff bodies were absent has been replaced by a 
hypothetical inviscid parallel shear flow which has a constant vorticity. This 
model admits analytical solutions and automatically yields closed streamlines 
in front of the bluff bodies such as the normal plate and the semicircular projec- 
tion, which are geometrically very similar to observed front separation bubbles. 
The present theory involves three or four parameters which must be determined 
on the basis of experimental information, the number of parameters depending 
upon the shape of bluff bodies. Two typical examples of bluff bodies, i.e. the 
normal plate and the semicircular projection, are worked out. Pressure distri- 
butions around these bodies predicted by the present theory are found to give 
a good agreement with experimental measurements. 

1. Introduction 
The main feature of flow past a bluff body is its separation from the body 

surface, well ahead of the rear stagnation point, and the formation of a broad 
wake. The separated boundary layer continues downstream as a free shear layer, 
which is well defined a t  first and forms a boundary between the wake and the 
distortediriviscidouterflow. Because of the complex nature of the wake dynamics, 
including the formation of organized vortex systems and the lack of knowledge 
of the link between wake and separation conditions, realistic theoretical models 
of the separated flow past a bluff body have included some empiricism. 

From a practical point of view, one of the most valuable results of any 
theoretical analysis of the separated flows a t  high Reynolds number is the predic- 
tion of the pressure distribution around a bluff body. A theoretical analysis of the 
time-averaged separated flow past a bluff body in a uniform flow was initiated 
by Helmholtz and Kirchhoff. They considered the two-dimensional incom- 
pressible flow past flat plates behind which extended constant-pressure wakes of 
infinite extent, by means of the conformal transformations. These constant- 
pressure wakes whose boundaries are so-called free streamlines grow infinitely wide 
with increasing downstream distance, and thus are improper representations 
of the actual wakes. Another defect of the constant-pressure wake model comes 
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from the basic assumption that the pressure everywhere in the wake is equal to 
the pressure outside the wake at infinity, or, in other words, that the pressure 
coefficient defined by c p b  = (pb-p),)/&plf%, where p w  and pb are the pressures 
a t  infinity outside the wake and at  any point within the wake, p is the density of 
fluid and Urn is the mainstream velocity, must vanish. In  actual wakes, however, 
the base pressure pb is observed to be much lower than pwr and thus Cpb is always 
negative. The base pressure is low enough to produce significant discrepancies 
between the results obtained from the Helmholtz-Kirchhoff model and experi- 
ment. For example, the drag coefficient measured for a flat plate is 1.95, whereas 
the Helmholtz-Kirchhoff model yields 0-88. 

Some modifications of the Helmholtz-Kirchhoff model were made to  allow 
arbitrary base pressures by Roshko (1955), Wu (1962, who refined the theory of 
Roshko), Woods (1955) and Parkinson & Jaiidali (1970). Woods’ theory, in 
particular, can be applied to compressible subsonic flow about given curved 
bodies. These theories have given pressure distributions around bluff bodies 
in good agreement with experimental measurements in the case of Reynolds 
numbers, which will hereafter be denoted by Re, of order greater than 103. 

However, when applied to the case of lower Reynolds number, in which sepa- 
rated flows are rather steady, these models are generally unsatisfactory, even 
when, as in Roshko’s (1955) case, the wake pressure is set equal to that measured 
experimentally along the non-wetted surface of the body. This fact was pointed 
out by Acrivos et ul. (1 965) for the pressure distribution around a circular cylinder, 
the Reynolds number being of order lo2. Thus they developed a new method 
which cansisted simply of an inviscid analysis around a suitable composite body 
(circular arc plus assumed wake boundary) together with the assumption of zero 
pressure drop in the vertical direction through the wake. The calculated pressure 
profiles on the cylinder surface for Re = 40, 129 and 177 not only agreed with the 
experimental measurements but were relatively insensitive to the shape of the 
assumed body contour. 

All the theories discussed above are concerned with two-dimensional bluff 
bodies located in a uniform stream of infinite extent. In  practice, however, there 
are many examples of bluff bodies which are attached to a plane wa1l-t on which a 
turbulent boundary layer develops, typical examples being roughness elements or 
part of an orifice or a valve. Buildings are also examples of this category of much 
larger scale. Upstream of a bluff body, an adverse pressure gradient will be pro- 
duced by the deflexion of the flow by the bluff body. The boundary layer will be 
forced to separate from the plane wall and will reattach on the front surface of 
the bluff body, thereby enclosing a front separation bubble. In  the cases of the 
normal plate, the rectangular cylinder and the semicircular projection, flow visual- 
ization techniques have shown that the mean flow inside and outside the front 
separation bubble is quite steady. The streamline which separates from the plane 
wall, and divides the main flow from the separated flow, must therefore be the 
streamline which reattaches to the bluff body. Observations fcr the case of a 
normal plate also show that the length of the front separation bubble is of the 

t In this paper the wall to which bluff bodies are attached will be referred to as the 
‘ plane wall ’. 
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same order as the plate height, and about 60 % of the upstream face of the normal 
plate is exposed to the separated flow. 

The effects of the front separation bubble are manifested in the pressure 
distributions around the front part of a bluff body. Good & Joubert (1968) 
have shown experimentally that, when normalized by maximum pressure, 
the pressure distributions on the normal plates exhibit approximately 
similar profiles which have a maximum at about y'fh = 0-6, where 9' is the 
distance along the flat plate measured from the plane wall (this may be clearly 
seen in figure 15 of Good & Joubert 1968). Also the pressure distributions 
on the plane wall upstream the normal plate are roughly constant in the 
region exposed to the front separation bubbles (Good & Joubert 1968, 
figure 4). Analogous pressure distributions have been observed for rectangular 
cylinders ( h i e  et ab. 1972) and semicircular projections (Sakamoto & Moriya 
1973). 

A theory describing the separated flow past a bluff body attached to the plane 
wall must therefore include the front separation bubble, together with the non- 
uniformity of the undisturbed velocity profile in the boundary layer. The effects 
of non-uniform velocity profiles will become theoretically tractable if an inviscid 
shear flow can be employed as a suitable model. Since, of all inviscid shear flows, 
the uniform shear flow which has a constant vorticity is easiest to treat analytic- , 
ally, it will be useful to examine the applicability of this model. In this connexion 
it should be noted that Fraenkel (1961) has obtained local solutions for the 
inviscid uniform shear flow past an acute corner (of included angle less than or 
equal to &;. measured on the side of the fluid) on an otherwise arbitrary boundary 
to show that a corner eddy is formed under certain circumstances. The flow 
pattern around a semicircular projection, which was worked out by Fraenkel, 
includes closed streamlines akin to the experimentally observed separation bubble 
in front of the semicircular projection. The same kind of closed streamlines 
had been obtained by Yih (1959) for the inviscid shear flow of cosine velocity 
profile in a two-dimensional channel. Although the mechanisms of flow in 
these closed streamlines may not be exactly the same as those in the actual 
front separation bubbles, a striking geometrical similarity between these two 
flow patterns justifies choosing the uniform shear flow as a model of the 
turbulent boundary layer developing on the plane wall to which bluff bodies are 
attached. 

Upon the basis of this model, this paper gives a free-streamline theory for the 
separated flows past bluff bodies attached to a plane wall, together with a com- 
parison of the theory with some experimental measurements. 

2. General theory 
We consider the two-dimensional, incompressible, inviscid, steady flow past 

a bluff body (ASC) with separation at the point X, which is attached to a plane 
wall represented by the real axis of the x plane, as shown in figure I. Throughout 
this paper, Cartesian co-ordinates are non-dimensionalized by a representative 
length 1 and the corresponding velocity components are non-dimensionalized by 
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FIGURE 1. Physical plane and transform planes. 

a representative velocity Uref. The velocity profile a t  infinitely large distances 
from the body is described by a uniform shear flow 

u, = U,+Ky, v, = 0, 

where U, is the non-dimensional speed at infinity on the x axis and K is the 
velocity gradient non-dimensionalized by Uref/l. 

Now we replace the wetted surface AS of the body contour ASC by the slit 
ASB. The remaining part SC of the body contour lies in the wake region and is 
therefore ignored in the present analysis. For the sake of brevity, the boundary 
of the fluid domain 9, which consists of the x axis and the slit, is designated as 
9. It is well established in the theory of conformal transformations that the 
domain 9 can be mapped conformally onto an upper half-plane. Let 

= f ( 6 ) ,  (2.1) 

where z = x + iy and < = 5 +ill, be one of these transformations, such that the 
points A and B in the z plane map onto 6 = cA and < = tB (cA < tB), respectively, 
in the < plane. The boundary 33 naturally maps onto the 5 axis of the 6 plane. 

A stream function $ is introduced by the definition 

aglay = u, a$px = -v, 
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where $ is non-dimensionalized by Uref1. Thereby the equation of continuity is 
automatically satisfied and Euler’s equations of motion for steady flow are simply 
reduced to 

where 
A$ = K ,  (2.2) 

A = a21ax2 + a2/ay2. 

The boundary conditions for 11. are 

If is subdivided into two parts, i.e. 

$ = & K y 2 + Y ,  

Y satisfies the Laplace equation 
AY = 0. (3.4) 

Accordingly, by the introduction of a function @ which is related to Y by the 
Cauchy-Riemann equations 

a@/ax = a u y y ,  a@/ay = - a ~ / a x ,  

the complex function defined by W = @ + iY becomes an analytic function of z.  
A t  the same time the boundary conditions (2.3) are transformed to  

(2.5) I Y + &Ky2 = constant on 99, 

a Y p ~ +  0, aY/ay+Uo as IzI + X I  in F. 

Assuming that (2. I )  behaves as 

x N kl(S+k,ln(S+E,+O({-l) (kl,k2 real) (2.6) 

for 161 3 co, Fraenkel (1961) has obtained the solution of (2.4) which satisfies 
the boundary conditions ( 2 . 5 ) ,  i.e. 

‘fr = 9(W,+ IT), (2.7) 

(2.8) 

where Y means ‘the imaginary part of’ and 

w, = @D,,+i’fr, = UOk1{ 

and 

In  order to have a free streamline which originates from the separation point X 
and extends in the downstream direction we add to (2.7) the flow from a com- 
bination of sinks and sources which are properly located in the x plane. This 
approach has been adopted by Parkinson & Jandali (1970) in a theory for two- 
dimensional separated flow of an incompressible fluid past a symmetrical bluff 
body in a uniform stream of infinite extent. For this purpose a third complex 
plane Z is introduced by the definition 

c = Z + ( a 2 / Z )  + %5A +&A (2.10) 
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where 2 = S + i Y  and a = The transformation (2.10) maps the slit 
ASB in the z plane onto a semicircular projection ASB of radius a with centre a t  
the origin of the 2 plane. In  the 2 plane the combination of a source pair of 
strength 2Q located at  (ae*P,  O ) ,  where /3 is real or purely imaginary, and its image 
sink of strength 2Q a t  the origin satisfies the boundary condition on the semi- 
circular projection and, by symmetry, the X axis can be considered as a solid 
boundary. The complex potential W, of the source-sink system is given by 

TV, = (Q/?T) {In (Z- aep)  +In (2 - a e d )  - 1112). (2.11) 

If /3 is real, source pairs are located on the S axis, while if /3 is purely imaginary, 
say /3 = id, source pairs are symmetrically located at  angles I. S on the circle 
which is formed by the semicircular projection ASB and its reflexion on the lower 
half of the 2 plane. The implications of /3 being real or purely imaginary will be 
discussed later in 8 3. 

When W, is added to (2.7) the stream function I++ of the resulting flow is 

$ = gKy2+9-(wu+w,+w,) (2.12) 

and the complex velocity in the x plane becomes 

dW dW dW, 
dz dz dx 

u-iv  = Ky+L+---"+- 

(2.13) 

Since the angle of intersection of curves at S is doubled in the z plane, the point 
S is a critical point of the transformation (2.1), where dz/d( =f'(() has a simple 
zero. Therefore, in order that the velocity at the point S is finite, we must have 

(2.14) 

where cs denotes the location of S in the 5 plane. Equation (2.14) determines Q 
in terms of U,, K and /3. Because of the doubling of the angle a t  S, the stagnation 
streamline leaving X in the 2 plane becomes the tangential separation streamline 
a t  S in the z plane. 

Since the non-dimensional vorticity -A$, which equals - K ,  is constant 
throughout the flow field, Bernoulli's equation can be written in the form 

p a  + *(uZ + V Z )  - K$m = p 4- $(U2+ v2) - K$, (2.15) 

where the pressure has been non-dimensionalized by the density of fluid multi- 
plied by the reference velocity squared, i.e. p U& and the suffix 00 means the value 
at  infinity. When the stream function of the boundary 53 is taken as a reference 
value of zero, $, becomes 

$m = uoy + &Ky2. 

The pressure coefficient on the surface of a bluff body, which is defined by 
C,, = 2 ( p f - p a ) ,  p ,  being the pressure on the surface, is therefore given by 

G,, = u;-uj-v;, (2.16) 

where uf and vf denote the velocity components along the surface. 
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The shape of the separation streamline is represented by the set of the points 
(x, y) which satisfy the equation $(x, y) = &. The asymptotic downstream 
spacing H between the separation streamline and the plane wall is given by the 
equation 

UoH+$KH2 = &. 

In the same manner as in free-streamline theories which have been developed 
by several authors mentioned above for the separated flow past a bluff body 
immersed in a uniform stream, separation of flow is also assumed to occur at the 
empirically given base pressure coefficient Cpb. The flow inside the separation 
streamline is ignored and the pressure coefficient over the downstream face SC 
is assumed constant and equal to cpb. Writing the velocity components a t  the 
separation point as usp and vsp, we therefore obtain from (2.15) 

(2.17) 

which gives arelation between the three constants U,, K and p. A free-streamline 
theory presented here will not be complete without two more relations between 
the three constants, which would, in some way, be connected with the velocity 
profile in an actual boundary layer existing on the plane wall. 

The general level of pressure in the front separation bubble will be determined 
by the separation pressure of the boundary layer. The stagnation pressure of the 
dividing streamline, however, will not be equal to the separation pressure, but will 
be greater by the amount that the total pressure on this streamline is increased 
by turbulent mixing with the higher velocity main flow. Although the separation 
pressure can be calculated with a reasonable accuracy according to  the theories 
developed by Stratford (1959), Townsend (1960, 1962), Nishioka & Iida (1972), 
et ul., the lack of knowledge about the turbulent mixing along the dividing 
streamline makes it difficult to obtain theoretically the stagnation pressure on 
the bluff body. This situation will imply that, for the time being, the three con- 
stants mentioned above cannot be related, only by theoretical considerations, 
to the boundary-layer velocity profile which would be measured at the bluff 
body station if the bluff body were absent, and thereby some empiricism must be 
introduced. 

We therefore assume that the maximum pressure on the wetted surface of the 
body occurs at  the experimentally given point z,,, = z,,, + iy,,,, the maximum 
pressure coefficient being Cpfmax. Since, from (2.16), the maximum value of 
C,, is U;, 

Substitution of z = zmax into (2.13) also yields 

(u--4z=z,, = 0. 

(2.18) 

(2.19) 

Equations (2.18) and (2.19) are the two relations required. 

examples and to compare theoretical results with experimental measurements. 
Having thus established the theory, we now proceed to work out a few 



208 

A s 

M .  Kiya and iM. Arie 

B 

X 
- 2Q 2Q 2Q 

FIGURE 2 .  Physical plane and transform planes for normal plate. 

3. Normal plate 
Let the complex planes z ,  {and Z be mutually related by the equations 

z = 8- (a2/2), 

{ = Z +  (aa/Z).  

A semicircle of radius a with its centre at  the origin of the Z plane is thus trans- 
formed into a segment of a line AB on the real axis of the { plane which extends 
from 6 = - 2a to 6 = 2a (see figure 2 ) .  The same circle in the Z plane is also mapped 
onto the slit AXB, which represents the normal plate of height 2a, in the z plane 
(the physical plane). The height of the normal plate can be conveniently chosen 
as the reference length so that we may put a = $. Since separation occurs at the 
edge of the plate, 

2s1, = 2ai, Z,, = ai, csP = 0, 

where the suffix sp means the separation point. 
Prom (3.1) and (3.2.) we get 

z - { + O ( F )  for 161 -+ 00, 

which, when compared with (2.6)) yields k, = I together with k, = 0 and k, = 0. 
The solution for W, thus becomes 

W, = U, 6 = U,[Z + (a2/2)] .  (3.3) 
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By writing the equation of the semicircular projection ASB in the 2 plane as  
2 = aeio (0 < 0 6 TT), we obtain from (3.1) and (3.2) 

c =  2acos0  = t, z = 2aisinO = iy. 

Elimination of 0 from these equations gives 

y2(& 0) = 4a2 - t2. (3.4) 
Therefore, upon substituting (3.1) into the expression (3.9) for W ,  and performing 
the integration, we get 

(3.5) 

When Q is subdivided into two parts, i.e. Q = Q, + Q,, WQ can be written in:the 
form 

where = CQ,/n) F ( Z ) ,  WQ, = CQ,/n) p(2)  
and F ( 2 )  = ln{(22-2aZcosh~+a2)/2}. 

= wQ, + wQs, (3.6) 

In  terms of I t ,  W,, TYQu and WQs, the complex velocity W = u - iv in the physical 
plane becomes 

Equations (3.1) and (3.2) yield 

dz Z2+a2 dz - Z2+a2 - a - 7 ,  Z - G 2 '  
which have simple zeros a t  Z = ai or 6 = 0, i.e. the separation point. Equation 
(2.14) is therefore reduced to 

and 

It follows from these equations that Q, and Q, can explicitly be obtained in the 
forms 

Q, = 2naUo cosh p, 
Qs = 8Ka2 cosh p. 

(3.8) 

(3.9) 

By substituting (3.8) and (3.9) into (2.12) and (3 .7)  and rearranging the terms, 
we get for the stream function 

14 P L M  56 
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and for the complex velocity 

M .  Kiya and M .  Arie 

The complex velocity Gf on the front surface of the plate can conveniently be 
expressed in terms of the parametric variable 0 as 

Gf = Uf - iv, 
sin 0 2Ka 

= i  uo+- + i - sin 0 In (tan2 go), (3.12) ( 4 ~ ) c o s 0 - c o s h ~  7~ 

where 0 is in the range 971 < 0 < 71. Hence, the pressure coefficient on the front 
surface of the plate becomes 

c,, = ug-v;. (3.13) 

The velocity vSp at the separation point on the edge of the plate is obtained by 
putting 0 = 4; in (3.12): 

VSP - - ( U : , + ~ ) / c o s h p .  (3.14) 

Therefore, (2.17) and (3.14) yield 

coshjj = [U, + (4Ka/71)]/( Ug - C,,)g. (3.15) 

If the right-hand side of (3.15) is greater than unity, /3 is real, while if it happens 
to be less than unity, /3 must be an imaginary quantity of the form is, where 
S is real, since cosh i6 = cos 6. 

We now proceed to estimate values of U,, K and /3 on the basis of experi- 
mental data which are available a t  present. According to experiments by Good 
& Joubert (1968)) pressures on the upstream face of the normal plate located 
in the smooth-wall boundary layer are determined by a wall similarity law of 
the form 

(3.16) 

Here h is the height of the plate, uT is the frictional velocity, Y is the kinematic 
viscosity and g, and g,, which are given in Good & Joubert's paper in a figure, 
are functions of y. For values of y less than 0.8, the pressure follows this wall law 
up to h/S = 1.75, where 6 is the thickness of the boundary layer. Equation (3.16) 
gives a maximum pressure coefficient a t  about y = 0.6. With the free-stream velo- 
city outside the boundary layer chosen as qei, equation (3.16) gives the pressure 
distribution on the front surface of the plate in terms of the height of the plate 
and the characteristics of the boundary layer in which the plate is immersed. 
Denoting the location of a maximum pressure by y = ymax, we have from (2.18) 
and (3.16) 

(3.17) 

(3.18) 
sin 0, 2Ka 

+-sin 0, In (tan2 40,) = 0, (u.'?) cos 0, - cosh! 7~ 

where 0, = sin-1 (ymax/2a). 
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Moreover, Good & Joubert (1968) have shown that the base-pressure coefficient 

(3.19) 

Here P i s  constant for turbulent boundary layers with zero pressure gradient and 
y5 is a universal function of h/S, which is tabulated in their paper. The value of 
c,b in (3.15) can therefore be computed from (3.19). When h/6 is less than 0.5, 
Py5(h/6) is negligibly small and thus C,, obeys a wall similarity law in the sense 
that cpb(&&7)2 can be described as a function of huJv only. 

Eliminating p from (3.15) and (3.18), we obtain K explicitly in terms of U,, 
c,b and 0, as follows: 

7l 
h’= - {b+(b2+4C)*} ,  

8a 
where 

b = (Ug - c,b)* {cos 0, - (In tan @,)-1] - U,, 
c = U,( Ug - C,,)*/ In tan $0,. 

Figure 3 compares the theoretical pressure distributions on the front surface 
of the normal plate with the experimental results of Good & Joubert (1968). 
Two theoretical curves which correspond to ymax = 0-60 and 0.65, respectively, 
have been included. The present theory shows good agreement with measure- 
ments except in the region of small y, where the theory predicts larger pressures 
than the measurements. This discrepancy is almost indistinguishable for small h/6, 
but it becomes sensible as h/6 increases. It should also be noted that, as h/6 
becomes larger, the theoretical curve for ymax = 0.65 gives better agreement 
with experimental measurements than that for ymax = 0.60, and vice versa. 

The drag coefficient C,, which is defined as the drag divided by &p( Uref)2 h, is 
given by 

cD = 2 / 1 ( $ ) f r - p b ) d Y  0 =/:(cp.f-cpb)dg* (3.20) 

Theoretical values of C, computed by substituting (3.13) and (3.19) into (3.20) 
are compared in table 1 with experimental values which have been obtained from 
an empirical formula 

(Good & Joubert 1968). Table 1 shows that they agree to within 2 per cent. 
For bluff bodies in an unbounded uniform stream, Roshko (1955) has demon- 

strated that the ratio of the velocity at the separation point to the free-stream 
velocity, which will be denoted by k, is almost the same for different bluff bodies 
under similar wake conditions, and a suitable mean value of k is 1.4. In  this con- 
nexion it is interesting to note that the ratio vJU, takes a constant value of 1-44 
when h/S is less than about 0.5, as is shown in the last column of table 1. Since 

cpb/ug = - (vsp/uO)2? (3.21) 

this fact suggests that the value of U, can directly be estimated from experi- 
mental data of c,b in the region of wall similarity law. 

14-2 
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PICURE 3. Pressure distributions on the front surface ofnormal plate. 0, experimental points 
of Good & Joubert (1968); --, present theory, ymx = 0.60; -,present theory, ymx = 0.65. 

u,/Uref hu,lv h/6 U ,  K coshp V, K coshp 
(Ymx = 0.60) (Ymax = 0.85) 

(a )  0.0375 268 0.144 0.536 0.674 1.247 0.536 0.778 1.331 
( b )  0.0375 2150 1.15 0,683 0.901 1.194 0.683 1.041 1.279 
(c) 0.0348 8210 1.75 0.707 0.977 1.145 0.707 1.132 1.230 
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h/S 

0.082 
0.103 
0.144 
0.219 
0.309 
0.383 
0.658 
0.823 
1.15 
1.75 
2.34 

U r I L're, 

0.0348 
0.0360 
0.0375 
0.0348 
0.0360 
0.0375 
0.0348 
0.0360 
0.0375 
0.0348 
0.0358 

hurlv 
385 
29 1 
268 

1030 
873 
716 

3080 
2330 
2150 
8210 
6301 

Experiment Theory 

0.54 0.54 
0.54 0.53 
0.57 0.56 
0.69 0.68 
0.71 0.70 
0.74 0.73 
0.87 0.86 
0.91 0.90 
1.06 1.04 
1.29 1.27 
1.60 1.56 

~ 1 s s / ~ 7 0  

1.44 
1-44 
1.44 
1-44 
1.44 
1.44 
1.46 
1.48 
1.54 
1.64 
1.81 

TABLE 1.  Drag coefficient Co and the ratio u,,/Uo. Since theoretical values of' CD and vs,/Uo 
for y,,,, = 0.60 and 0.65 are almost the same, only those for ymar = 0.60 are shown in this 
table. 

2.0 - 

- 2 4  -1.0 1 .o 3.0 4.0 5.0 6.0 

X 

FIGURE 4. Streamlines around normal plate. ---, present theory, U, = 0.713, h' = 1.227, 
coshp = 1.161; 0--0, experimental separation streamline (Good & Joubert 1968). 
lijS = 2.34, hur/v = 6301, ur/Clref = 0.0358. 

In  figure 4 a few theoretical streamlines around the normal plate are shown, 
together with the separation streamline measured by Good & Joubert (1968). 
The shape of the front separation bubble is very similar to that observed 
experimentally by flow visualization techniques. It is also noteworthy that the 
theoretical separation streamline is very close to the experimental one in the 
range 0 < x 6 6.0. Further downstream the experimental streamline approaches 
the plane wall until it reattaches to the plane wall, whereas the theoretical 
one approaches an asymptotic ordinate H = 2.455. 

4. Semicircular projection 
Consider the transformations 

a2( 1 - a2) z = Z-a,2- 
2-a2  ' 

a2 

2 Y=Z+-, 

(4.1) 

(4.2) 



214 

A 

211. Kiya and ill. Arie 
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where a is a real constant defined by 

a = cosa, (4.3) 

a being real. As shown in figure 5, the circular arc slit AXB, of which the section 
AX represents the wetted surface of the semicircular projection ASC in the z 
plane, is thereby mapped onto a segment of a line AB which lies on the real axis 
of the < plane in the range 161 < 2a, and also onto a semicircle of radius a in the 2 
plane. The radius of the semicircle in the z plane is unity and its centre is at  
(A, O),  where A = I - 2a2 = - cos 2a. This implies that the radius of the semicircle 
has been chosen as the representative length. Moreover, the separation point X 
in the physical plane, which is 

zsp = Zaisina, 
is mapped onto 

5 SP = 2a2, Z,, = a& (4 .4a,  b )  

in the 5 and Z planes respectively. From (4 .4b)  it follows that a represents the 
angle between OX and OB in the 2 plane. The angle tl. is related to the separation 
angle PSP in the z plane by 

psp = n - 2a. 

The semicircle in the 2 plane can conveniently be expressed in the form 
Z = aeiQ (0 < 0 < n). The segment of the line AB in the <plane thereby becomes 
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&' = 2a cos 0, and the ordinate of the circular arc slit ASB in the x plane is written 
as 

%sin @( 1 -a  cos 0)  
(4.5) Y =  1-2acos0-ta2 * 

Equation (4.5) and the relation cos 0 = &a lead to 

Substituting (4.6) into (2.9) and performing the integration, we obtain 

(4.7) 

where 
J1 = 6+2(a2- l ) ,  J2 = (6-2)2(4a2-C;2)/(<-a2-1)27 

J~ = -(a2- 1)4/(6-a2- 1). 

Since z - 6 + O( 6-l) for 161 -+ 00, the expressions for W, and W, are the same as 
(3.3) and (3.6), respectively. In  view of (4.4), equation (2.14) can be written as 

which yield 
Q, = - 2~aU,(a - coshp), 

Q, = -Ka(a-coshp)  (4-9) 

Substituting (3.3), (4.7) and (3.6), with Q, and Q, given by (4.8) and (4.9), into 
(3.7), we obtain after straightforward but lengthy calculations 

9 = u - i v  
( 2 2  - a2) (2 - a2)2 

2 2 ( 2 2  - 2aZ cosh p + a2) 
= Kiy+U, 

a(L, + 2aL2 cosh p) 1 L3(Z2 - 2 2  + a2) Z - a +- In - 
+722(2- 22-a2 1 ) 2  Z2-2a2coshP+a2 4 2 ( 2 - 1 ) ( 2 - a 2 )  ( 2 + a )  
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L1 = (2' + a2)' + 3(a2 + 1)222 - (5a2 + 3) 2(Z2 + a'), 

L2 = 32(22  + a2) - (a2 + 3) 2 2 ,  L, = 2 2 ( 2  - 1 ) 2  + ( 2 2  - a y ,  

L, = - 3 a ~ ( 3 ~ 2 -  1) ( 2 4 + a 4 ) + 4 a 2 ( 2 u 4 + 3 a 2 -  I ) Z ( Z Z + ~ ~ )  
- (3a8 + 20a6 + 2ua - 1 ) 22, 

L, = (3a2 - 1)  (Z4 + a4) - ( 3a2 - 1)  ( a2 + 3) 2(Z2 + a2) + (a2 + 1) ( a4 + 8a2 - 3) Z2. 

The complex velocity on the wetted surface AS, which will be denoted by Wf, 
is obtained by substituting 2 = aei@ (a < 0 < 7 ~ )  into (4.10). The result is 

- 
?Of = Uf - 2Vf  

sin @(I -a  cos 0) 
1 - 2a cos 0 + a2 = 2Ka + U,( M ,  + iN,) N 

(4.11) 

where 

Ml = u2sin 2 0  - 2a sin 0, 

M4 = a3sin30-a2(a2+3)sin20+a(3a2+2)sin0,  

M2 = u2cos 2 0  - 2a cos 0 + 1, M, = 1 - 2a cos 0 + a2, 

M5 zz C L ~ C O S ~ ~ - U ~ ( C L ~ + ~ ) C O S ~ ~ + ~ ( ~ ~ ~ + ~ ) C O S @ - ( ~ C L ~ +  l), 

N = sin @/(cos 0 - coshp), LT = 4a2 cos2 0 - 2a(5a2 + 3) cos 0 + 3 ( ~ , ~  + 
Lij: = ~ U C O S  0 - (a3+ 3), Lg = M2, 

Lx = - 4a4(3a2 - 1) cos 2 0  + 8a3(2a4 + 3a2 - 1) cos 0 - (3a8 + 20a6 + 2a4 - I ) ,  

L; = 2a2(3a2- l)cos20-2a(3a2- i ) (a2+3)cosO+(a2+1) (a4+8a2-3). 

The magnitude of velocity at the separation point 8 is given, after substitution 
of 0 = a into (4.11) and some trigonometric manipulation, by 

qsp = us* sin Ps, + VSP cos Ps, 

= Uo(a2- 1)  N* + - 3a(a2- I )  (1 - 2a C O S ~ / ~ +  a') N* 
7r 

(; +3 + 47ra2( 1 - a2) 

7 
+2a(Za2--1)sinaIn - 

-&[lid- 2a2- 1 - za(7a2- 3) cosh/3]N*In (:;3). - (4.12) 

where N* = sin ./(a - cosh /3). 
The four undetermined constants, i.e. U,, K ,  /3 and PSp, can be determined from 

(2.17). (2.18) and (2.19), together with the location of the separation point which 
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FIGURE 6. Pressure distributions on semicircular projection. ___ , present theory, 
P B P  - - 85", C,, = -0.40; ---, present theory, ,8,, = 85", C g b  = -0.12; 0, experiment by 
Sakamoto & Moriya (1973),  r/S = 0.268 (r = radius of semicircular projection), u7/Uref = 
0.0393, ruJv = 528. 

has been given by experiments. By eliminating /3 from (2.17) and (2.19), we 
obtain a quadratic equation for K with complicated coefficients, which can be 
solved anyway. 

Within the authors' knowledge, experimental information about the semi- 
circular projection attached to a plane wall is not sufficient to correlate pressure 
distributions on the projection and its drag coefficients with the characteristics 
of the turbulent boundary layer in which it is immersed. The only data available 
to the authors are the pressure distribution along the surface of a semicircular 
projection measured by Sakamoto & Moriya (1973) in the subcritical range. 
In figure 6 their result is compared with the theoretical surface pressure 
distributions for cases representing two values of C,, with the same separation 
angle p,,. Here the free-stream velocity outside the turbulent boundary 
layer has been chosen as the representative velocity qef. The present theory 
shows good general agreement with the experimental measurements except 
near the suction peak and in the region exposed to the separated flow, where 
measured pressures increase slightly towards Pr = 180" while the theory gives 
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FIGURE 7. Theoretical shape of separation streamline for semicircular projection. 
CDb = - 0.42, ps, = 85", Of,, = 0.35, p,,, = 20" (pmax = angle of maximum pressure). 

constant pressures. Anyway this discrepancy is so small that the surface pressure 
loading of the semicircular projection can be predicted accurately enough for 
practical use by the present theory. 

Figure 7 gives the shape of the separation streamline calculated by the present 
theory for the case of Psp = 85", Cpb = - 0.42. In contrast to the case of the 
normal plate, the theoretical shape of the separation streamline seems to be 
reasonable within a short distance from the separation point, although detailed 
flow patterns around the semicircular projection have not been clarified as yet. 

Finally the drag coefficients calculated by the present theory, i.e. CD = 0.54 
for C,b = - 0.40 and cD = 0-56 for cpb = - 0.42, agreed with the measured value 
CD = 0.55 within 2 per cent. 

5. Concluding remarks 
A free-streamline theory has been developed for calculating the separated 

flow past a two-dimensional bluff body attached to a long plane wall on which 
a turbulent boundary layer exists. The velocity profile in the turbulent boundary 
layer which would be measured at the bluff body station if the bluff body were 
absent has been replaced by a hypothetical inviscid shear flow which has a con- 
stant vorticity. This model automatically yields closed streamlines in front of 
bluff bodies such as a normal plate and a semicircular projection, which are 
geometrically very similar to observed front separation bubbles. However, the 
lack of knowledge about turbulent mixing along the edge of the front separation 
bubbles introduces another empiricism into the present theory, together with 
the base-pressure coefficient and the separation position, which are all the 
empirical constants needed in the free-streamline theoryfor bluff bodies in an 
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unbounded uniform stream. As a result, the present theory includes three or 
four constants which should be determined on the basis of experimental informa- 
tion, the number of constants depending upon the shape of the bluff body. For 
bluff bodies for which these constants can be properly estimated, theoretical 
pressure distributions predicted by the present theory appear to be in good agree- 
ment with experimental results. Moreover, the theoretical shape of the free 
streamline separated from the edge of the normal plate agrees well with the 
measured shape for a considerable distance downstream the plate. 

Although only two typical examples of bluff bodies, i.e. the normal plate and 
the semicircular projection, are worked out in the present paper, the method can 
be applied to other shapes whose wetted surface and its reflexion on the lower 
half of the z plane can be mapped onto a circle in the 2 plane. 
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